Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant
نویسندگان
چکیده
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.
منابع مشابه
Maximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions
The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...
متن کاملA New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System
In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...
متن کاملHierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle
This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric p...
متن کاملRobust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems
This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV), fuel cell (FC) and battery energy storage (BES) in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly descr...
متن کاملPerformance evaluation of first Iranian large scale photovoltaic power plant
In recent years, due to the fact that non-renewable energies come to an end, renewable energy is expected to provide a significant part of the future needs of Iran. Among these energies, solar energy is a suitable option for a wide range of the country, due to availability, proper radiation intensity, and high sunshine times during the year (about 300 sunny days per year). The purpose of this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016